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Abstract. The quasiclassical approximation to the eigenvalues at the bottom of a one-
dimensional potential well are obtained by applying the ‘twisting trick’ of Simon and Davies
to reduce the problem to an ordinary Rayleigh—8dimger problem. The key is that the twist
occurs on a scale intermediate between the two scales of the problem.

Introduction

The asymptotics of the eigenvalues at the bottom of a potential well are well known [3, 7].
Here we shall derive these results by a somewhat different method which was employed by
McDonnell and the author [4] to discuss the asymptotics of Stark effect resonance widths.
This method oftwisting at intermediate scalegelies on the notion that in a problem with
multiple length scales, phenomena which take place on different scales frequently act as
though they are in orthogonal subspaces. A precise version of this notion can sometimes
be arranged by use of the ‘twisting trick’ [1, 2, 6].

We shall consider the Hamiltonian

64])2 + v(x)

on Ly(—o0, +00), wherep = —id/dx andv(x) is a C* function having auniqueglobal
minimum v(0) = 0 at the origin. More complicated cases have been considered (higher
dimensions, several minima, degeneracies, other forms of dependence on the parameter
etc) but our purpose is to illustrate a method, not to achieve maximum generality, so we
shall stick to the simplest case.

The relevant length scales are as follows. The potenti@) changes on a scale of
order 1. The eigenfunctions at the bottom of the well are asymptotically of the form
¢ (x/€), Whereg, is a Hermite function, and so decay exponentially on a scale of etder
We shall therefore cut out a region with length of ordér 0 < o < 1 about the origin.

This region is very small on a scale of order 1 and very large on a scale of ardere
behaviour in the two regions is separated approximately by twisting, and the result is then
obtained by ordinary perturbation theory.

1. Main theorem

To be precise, we shall make the following assumptions aboEwt
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Hypothesis 1L et v(x) be aC* function on—oco < x < oo, and assume that(x) has
a unique global minimum(0) = 0 atx = 0, which is non-degenerate in the sense that
v”(0) > 0. For normalization, we shall take'(0) = 2. Assume further that

liminf v(x) > O. (1.1)

|x|—o00

Rather than dealing directly with

e*p? +v(x) 1.2)
we shall scalex — ex to obtain

e’[p? 4 e 2v(ex)] (1.3)
and will work with

he = p? + € %v(ex). (1.4)

(Note that the scales and 1 become 1 and/d here, so that the twist will come on a scale
of ordere™, O <o < 1))

Theorem 1If v(x) satisfies hypothesis 1, then for eath the lowestN eigenvalues ofi,
are given asymptotically by
E,=2n+1) +ci(n)e+ - -ce(m)ek + - (1.5)

for 0 < n < N, where the coefficients,(n) are obtained from the formal Rayleigh—
Schibdinger perturbation series for the problem

PPl +ax®+ a4 (1.6)
where
U(k+2)(o)
*= k20
2. Twisting

Fix 0 < « < 1. Define a functionw, (x) by
x? x| = 2¢7¢
We (x) = (21)

e x| < e

Consider the matrix operator

- [ he 0 i € 2v(ex) 0
He= ( 0 p2+wg<x)> =F +< 0 wg<x)> (2)

on Ly(—o0, +00) ® C2 where P? = p? ® I, and note thatd, has the same low-lying
eigenvalues as,, sincep? + w,(x) > e 2,
Let U(x) be a real orthogonal 8 2 matrix, C* in x, with

10
U(x):]:( > for |x| <1
01

and
0 1
wm=1=( ) for |x| > 2
-1 0
(see, e.g., [1]). Transformingf. by U (e*x), we find thatH, is unitarily equivalent to

H, = U*(e*x)H.U (¢*x). (2.3)
This operator is described by the following lemma.
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Lemma 1ForO<a <

3 H, is unitarily equivalent to an operator

h e de
H, = ( ot ) (2.4)
dr ke
where (a)ko = p? + x? is the harmonic oscillator, and
Ve = ve(x) = O(Gy) (25)

wherey =1 —3a > 0; (b) k. = p? + . (x), where
We(x) > 26
and (c)de = a.(x)p + be(x), with
ac(x) = O(e”) and be(x) = O(eP) (2.6)

whereg = min(y, 2a). Moreover,v.(x) is supported irx| < 2¢~¢, while a.(x) andb, (x)
are supported ir ™ < |x| < 2.

Note. By commutinga. (x) with p, one can also write

de = pac(x) + be(x)
whereda, andb, have the same properties asand b..
Proof. By Taylor’'s theorem

De(x) = € 2v(ex) = x% + Ra(x, €) (2.7
where

Ro(x, €) = gv" (§)ex®
with |&] < |ex|. For|x| < 2¢7%, we have

|R2(x, €)] < Mee ™ = O(e” (2.8)
whereM = 3 sup{|v”(§)| : €] < 1}, andy = 1— 3« > 0.

Let
U— (ull Mlz)
Uz1 U2
and consider the term
% O
W(x,e) =U(e*x)* U(e*x).
0 w.
We compute
w11 = U3, 7 + ulw,.

Sinceu?, is supported inx| < 2¢~* andu3, in |x| > ¢, we find from equations (2.8)
and (2.9) that

ul v = ux% + O(e”)
while from equation (2.1)
u%zwE = x?
exactly, so that, adding,
w1 = x% + O(e). (2.9)
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Similarly
W12 = W21 = U112V + U21U22We.

This vanishes except in the range® < |x| < 2¢~“. In that rangep, = x2+ O(e?), while
w, = x? exactly. Thus

wip = (u11u12 + uziua)x? 4+ O(e").
But the coefficient ofc? is zero, sincd/*U = I, so that
w1 = O(e”). (2.10)

Finally, sincex = 0 is theuniqueminimum of v(x), and sincev(x) is bounded away
from zero at infinity, the global minimum of(x) on |x| > € is its minimum on
€7 L |x] < 2¢1* so that

Te(x) = €2 4+ O(e”)

on|x| > e “.
Using equation (2.9), we obtain
W22 = UgpWe + gy e > s€ 2. (2.11)

These terms are therefore consistent with the claims of lemma 1.
The remaining terms ar&2 and the commutator

U(e*x)*[P2, U(e%x)] = A(x, €)p + pA(x, €) (2.12)
where
A(x,€) =ieU(e*x)*U'(e“x) = A(x, €)*

vanishes except oa™* < |x| < 2¢7%. SinceU (x) is orthogonal,U*(x)U’(x) is skew
symmetric, and hence thdiagonal termsof the matrixA(x, €) are zero Clearly

Ax, €) = O(€%). (2.13)
Moreover

pA(x,€) = A(x,e)p —iA'(x, €) (2.14)
where

Al(x, €) = O(™). (2.15)
Combining this with the preceding yields the lemma. O

3. Perturbation theory

We shall write equation (2.4) as

H.=H’+ V. + D, (3.1)
where
hg O
HO = ( 0 ) (3.2)
0 k.

ve O
() o3
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and

0 d.
b-(2 %) ”

and will regardV, + D, as a perturbation on.
Define ro(z) = (ho — 2)™, ge(2) = (ke —2)™%, Re(z) = (He — )™t and R0(z) =
(H?—2)7%
Lemma 2.Let B, = pg.(z). Then for anya > 0
| Bell = O(e®)

uniformly for Rez < a.

Proof. Letz = +is. Then, sincew. > 0,

BB, = 2.(2)*p%gc(2) < 8(2)" (P* + wo) g () (3.5)
= (ke — 1 +is) Yke(ke — 1t —is)t (3.6)
k. ke

T (ke — 12 +52 S (ke —a)?’ 37

The norm of this is the minimum of(x +a) 2 over the spectrum of., which is contained
in [e72"/2, 00). If €72 > 2a, this will not exceed

2¢ 2 (€7 4+ 20)7% = O(e™).
Consider the non-degenerate eigenvalge= 2n + 1 of o, and hence also afi° (for

smalle¢). LetT" be the circle with centreg and radius 1. We shall compute the perturbed
eigenvalue of

H . =H°+T.. (3.8)

As in [5, p 79], this can be done if the series
Re(z) =) RADT.RA2)* (3.9)
k=0

converges uniformly oi". But

€ dE €
T.R9(z) = (v ro(z) deg (Z)) .
diro(z) 0
Using lemmas 1 and 2, and the fact that(z) is bounded o, we find that
ITR(2)|| = O(e”) (3.10)

uniformly on " wherey’ = min(y, «). This ensures the existence of a unique eigenvalue
of H, insideT.
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4. Asymptotic series

It remains for us to identify the terms of the series for(¢) to all orders ine. Let
s = lim [ro(A) — (4 = 20)"I¢bo) (gl
—>A0

be the reduced resolvent fagp = p? + x? at .o = 2n + 1, wheregyg is the normalized
eigenfunction. The reduced resolvent ff is then

s 0
S, = , 4.1
(O ge(k0)> ( )

Let (x) = (14 x2)z.
Lemma 3.For everyN > 0, (x)VS(x)~" is bounded.

Proof. By a standard result [7](x)Vro(z){(x)~" is bounded forz ¢ o (hg). Subtracting
(x)¥ o) (dol (x)~N (1o — z) ! gives an operator which is analytic in a neighbourhoodHf

with no singularity, so we may pass to the limit> Ao. |
Expand the resolvent in powers of the perturbatiogh + D, = G.. Then
[5, p 79, equation (2.31)]
o0 —l r
E,(e) = = tr (GeS™ G S* ... G S™) (4.2)
k=0 kg4 Ak, =r—1
kn=

whereS® = § and S©@ = —|¢o) (¢o| = — Po. By equation (3.9), theth term isO(¢"”") so
to O(eV) for any fixed N only a finite number of terms contribute #,(¢). Furthermore,
each term of (4.2) is a sum of products of factors of the form

(9olGeSGeS - - SGeldo). (4.3)
Putting G. = V. + D, and expanding, we have further a sum of products of factors
T = (po|GPSXDS .. SXO|¢ho) (4.4)

where X is eitherV, or D.,.
Lemma 4.f at least oneX”’ = D,, then

T = OEN) (4.5)
for every N.
Proof. Letm be the first index withx™ = D.. Then

T = (WP e) (4.6)
where

O e A l¢’°) (@.7)
and

Yy = D SXMY XD . (4.8)
Let x.(x) be the characteristic function of {*, 2¢~*]. Since x,v» = v¥, we have

T = (x¥Pe) = WP xee). (4.9)

By the estimates abovesY = O(e?) for somep, so it suffices to prove that v tends
rapidly to zero.
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Let N be arbitrary and write

_ _ m—1
XeWe = (xe () ™) [)Vs(x) Mve ] ((x)V o). (4.10)
The first factor isO(eV%), while the rest isO(e?) for somep. SinceN is arbitrary, this
completes the proof. O

This means that to all orders ef E,(¢) is given by the perturbation problem
he = ho + ve. (4.11)
Now, by construction,

Ve(x) = Ye(x)[e 2v(ex) — x7]

=Y.(x)[earx®+ -+ VayxVt2 + Ry(x, )] (4.12)
whereY, (x) = Y(e%x) = ufl(e“x) is unity for |x| < €~ and vanishes fofx| > 2¢7“. By
equation (2.9)

Ry(x,€) = O (eNTieV+3) (4.13)
If we choose, as we may, small, depending oV, then
Ry(x,€) = O(e™)

so that it may be dropped to ordat.
Use equation (4.2) again, this time for the problem (4.11). Expand and collect terms,
treatingY, (x) formally as 1, to obtain a sum of products of factors like

T = (¢olxlrsxl2s - - - x|o) (4.14)

wherex? = Y.(x)x?. If x? is replaced byx”, these are exactly the coefficients for the
formal problem (1.5), so it remains for us to show that this replacementyields a term
which differs fromT to arbitrarily high order. y

Another way to say this is that i, is replaced byY, = 1 — Y, in T, the result is
O(eM).

Let S, = (x)*S(x)~*. Supposex”tY, is replaced byt” Y, in T to give T. We have

T = (|Ve) (4.15)
where

Ye = XY xPt - xPio (4.16)
and

Ye = SxPHLS ... xPrgpg. (4.17)
Write

Ve = (?e (X)iN) (Xf[ (X)fp") SN+p, ()cfH (x)’pH) SNt prtpey - XD (x) 7P

o () NPt g (4.18)

Now Y, (x)™" = O(e*V), while the remaining factors are bounded. A similar argument
shows that/. is bounded. Thus

T = O@*N).

Since N is arbitrary, this proves the result, since the same argument works if some of the
x.'s are replaced by’s. O
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