Quasiclassical eigenvalues

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1997 J. Phys. A: Math. Gen. 302069
(http://iopscience.iop.org/0305-4470/30/6/027)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.112
The article was downloaded on 02/06/2010 at 06:14

Please note that terms and conditions apply.

Quasiclassical eigenvalues

James S Howland \dagger
Department of Mathematics, University of Virginia, Charlottesville, VA 22903, USA

Received 13 May 1996

Abstract

The quasiclassical approximation to the eigenvalues at the bottom of a onedimensional potential well are obtained by applying the 'twisting trick' of Simon and Davies to reduce the problem to an ordinary Rayleigh-Schrödinger problem. The key is that the twist occurs on a scale intermediate between the two scales of the problem.

Introduction

The asymptotics of the eigenvalues at the bottom of a potential well are well known [3, 7]. Here we shall derive these results by a somewhat different method which was employed by McDonnell and the author [4] to discuss the asymptotics of Stark effect resonance widths. This method of 'twisting at intermediate scales' relies on the notion that in a problem with multiple length scales, phenomena which take place on different scales frequently act as though they are in orthogonal subspaces. A precise version of this notion can sometimes be arranged by use of the 'twisting trick' [1, 2, 6].

We shall consider the Hamiltonian

$$
\epsilon^{4} p^{2}+v(x)
$$

on $L_{2}(-\infty,+\infty)$, where $p=-\mathrm{id} / \mathrm{d} x$ and $v(x)$ is a C^{∞} function having a unique global minimum $v(0)=0$ at the origin. More complicated cases have been considered (higher dimensions, several minima, degeneracies, other forms of dependence on the parameter ϵ, etc) but our purpose is to illustrate a method, not to achieve maximum generality, so we shall stick to the simplest case.

The relevant length scales are as follows. The potential $v(x)$ changes on a scale of order 1. The eigenfunctions at the bottom of the well are asymptotically of the form $\phi_{n}(x / \epsilon)$, where ϕ_{n} is a Hermite function, and so decay exponentially on a scale of order ϵ. We shall therefore cut out a region with length of order $\epsilon^{\alpha}, 0<\alpha<1$ about the origin. This region is very small on a scale of order 1 and very large on a scale of order ϵ. The behaviour in the two regions is separated approximately by twisting, and the result is then obtained by ordinary perturbation theory.

1. Main theorem

To be precise, we shall make the following assumptions about $v(x)$.

[^0]Hypothesis 1. Let $v(x)$ be a C^{∞} function on $-\infty<x<\infty$, and assume that $v(x)$ has a unique global minimum $v(0)=0$ at $x=0$, which is non-degenerate in the sense that $v^{\prime \prime}(0)>0$. For normalization, we shall take $v^{\prime \prime}(0)=2$. Assume further that

$$
\begin{equation*}
\liminf _{|x| \rightarrow \infty} v(x)>0 \tag{1.1}
\end{equation*}
$$

Rather than dealing directly with

$$
\begin{equation*}
\epsilon^{4} p^{2}+v(x) \tag{1.2}
\end{equation*}
$$

we shall scale $x \rightarrow \epsilon x$ to obtain

$$
\begin{equation*}
\epsilon^{2}\left[p^{2}+\epsilon^{-2} v(\epsilon x)\right] \tag{1.3}
\end{equation*}
$$

and will work with

$$
\begin{equation*}
h_{\epsilon}=p^{2}+\epsilon^{-2} v(\epsilon x) \tag{1.4}
\end{equation*}
$$

(Note that the scales ϵ and 1 become 1 and $1 / \epsilon$ here, so that the twist will come on a scale of order $\epsilon^{-\alpha}, \quad 0<\alpha<1$.)
Theorem 1. If $v(x)$ satisfies hypothesis 1 , then for each N, the lowest N eigenvalues of h_{ϵ} are given asymptotically by

$$
\begin{equation*}
E_{n}=(2 n+1)+c_{1}(n) \epsilon+\cdots c_{k}(n) \epsilon^{k}+\cdots \tag{1.5}
\end{equation*}
$$

for $0 \leqslant n<N$, where the coefficients $c_{k}(n)$ are obtained from the formal RayleighSchrödinger perturbation series for the problem

$$
\begin{equation*}
p^{2}+x^{2}+a_{1} x^{3}+\cdots+a_{k} \epsilon^{k} x^{k+2}+\cdots \tag{1.6}
\end{equation*}
$$

where

$$
a_{k}=\frac{v^{(k+2)}(0)}{(k+2)!}
$$

2. Twisting

Fix $0<\alpha<\frac{1}{3}$. Define a function $w_{\epsilon}(x)$ by

$$
w_{\epsilon}(x)= \begin{cases}x^{2} & |x| \geqslant 2 \epsilon^{-\alpha} \tag{2.1}\\ \epsilon^{-2 \alpha} & |x| \leqslant \epsilon^{-\alpha}\end{cases}
$$

Consider the matrix operator

$$
\tilde{H}_{\epsilon}=\left(\begin{array}{cc}
h_{\epsilon} & 0 \tag{2.2}\\
0 & p^{2}+w_{\epsilon}(x)
\end{array}\right)=P^{2}+\left(\begin{array}{cc}
\epsilon^{-2} v(\epsilon x) & 0 \\
0 & w_{\epsilon}(x)
\end{array}\right)
$$

on $L_{2}(-\infty,+\infty) \otimes \mathbb{C}^{2}$ where $P^{2}=p^{2} \otimes I$, and note that H_{ϵ} has the same low-lying eigenvalues as h_{ϵ}, since $p^{2}+w_{\epsilon}(x) \geqslant \epsilon^{-2 \alpha}$.

Let $U(x)$ be a real orthogonal 2×2 matrix, C^{∞} in x, with

$$
U(x)=I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad \text { for } \quad|x| \leqslant 1
$$

and

$$
U(x)=J=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \quad \text { for } \quad|x| \geqslant 2
$$

(see, e.g., [1]). Transforming \tilde{H}_{ϵ} by $U\left(\epsilon^{\alpha} x\right)$, we find that \tilde{H}_{ϵ} is unitarily equivalent to

$$
\begin{equation*}
H_{\epsilon}=U^{*}\left(\epsilon^{\alpha} x\right) \tilde{H}_{\epsilon} U\left(\epsilon^{\alpha} x\right) \tag{2.3}
\end{equation*}
$$

This operator is described by the following lemma.

Lemma 1. For $0<\alpha<\frac{1}{3}, \tilde{H}_{\epsilon}$ is unitarily equivalent to an operator

$$
H_{\epsilon}=\left(\begin{array}{cc}
h_{0}+v_{\epsilon} & d_{\epsilon} \tag{2.4}\\
d_{\epsilon}^{*} & k_{\epsilon}
\end{array}\right)
$$

where (a) $h_{0}=p^{2}+x^{2}$ is the harmonic oscillator, and

$$
\begin{equation*}
v_{\epsilon}=v_{\epsilon}(x)=\mathcal{O}\left(\epsilon^{\gamma}\right) \tag{2.5}
\end{equation*}
$$

where $\gamma=1-3 \alpha>0$; (b) $k_{\epsilon}=p^{2}+\tilde{w}_{\epsilon}(x)$, where

$$
\tilde{w}_{\epsilon}(x) \geqslant \frac{1}{2} \epsilon^{-2 \alpha}
$$

and (c) $d_{\epsilon}=a_{\epsilon}(x) p+b_{\epsilon}(x)$, with

$$
\begin{equation*}
a_{\epsilon}(x)=\mathcal{O}\left(\epsilon^{\alpha}\right) \quad \text { and } \quad b_{\epsilon}(x)=\mathcal{O}\left(\epsilon^{\beta}\right) \tag{2.6}
\end{equation*}
$$

where $\beta=\min (\gamma, 2 \alpha)$. Moreover, $v_{\epsilon}(x)$ is supported in $|x| \leqslant 2 \epsilon^{-\alpha}$, while $a_{\epsilon}(x)$ and $b_{\epsilon}(x)$ are supported in $\epsilon^{-\alpha} \leqslant|x| \leqslant 2 \epsilon^{-\alpha}$.
Note. By commuting $a_{\epsilon}(x)$ with p, one can also write

$$
d_{\epsilon}=p \tilde{a}_{\epsilon}(x)+\tilde{b}_{\epsilon}(x)
$$

where \tilde{a}_{ϵ} and \tilde{b}_{ϵ} have the same properties as a_{ϵ} and b_{ϵ}.
Proof. By Taylor's theorem

$$
\begin{equation*}
\tilde{v}_{\epsilon}(x)=\epsilon^{-2} v(\epsilon x)=x^{2}+R_{2}(x, \epsilon) \tag{2.7}
\end{equation*}
$$

where

$$
R_{2}(x, \epsilon)=\frac{1}{6} v^{\prime \prime \prime}(\xi) \epsilon x^{3}
$$

with $|\xi|<|\epsilon x|$. For $|x| \leqslant 2 \epsilon^{-\alpha}$, we have

$$
\begin{equation*}
\left|R_{2}(x, \epsilon)\right| \leqslant M \epsilon \epsilon^{-3 \alpha}=\mathcal{O}\left(\epsilon^{\gamma}\right) \tag{2.8}
\end{equation*}
$$

where $M=\frac{4}{3} \sup \left\{\left|v^{\prime \prime \prime}(\xi)\right|:|\xi| \leqslant 1\right\}$, and $\gamma=1-3 \alpha>0$.
Let

$$
U=\left(\begin{array}{ll}
u_{11} & u_{12} \\
u_{21} & u_{22}
\end{array}\right)
$$

and consider the term

$$
W(x, \epsilon) \equiv U\left(\epsilon^{\alpha} x\right)^{*}\left(\begin{array}{cc}
\tilde{v}_{\epsilon} & 0 \\
0 & w_{\epsilon}
\end{array}\right) U\left(\epsilon^{\alpha} x\right)
$$

We compute

$$
w_{11}=u_{11}^{2} \tilde{\gamma}_{\epsilon}+u_{12}^{2} w_{\epsilon}
$$

Since u_{11}^{2} is supported in $|x| \leqslant 2 \epsilon^{-\alpha}$ and u_{12}^{2} in $|x| \geqslant \epsilon^{-\alpha}$, we find from equations (2.8) and (2.9) that

$$
u_{11}^{2} \tilde{v}_{\epsilon}=u_{11}^{2} x^{2}+\mathcal{O}\left(\epsilon^{\gamma}\right)
$$

while from equation (2.1)

$$
u_{12}^{2} w_{\epsilon}=x^{2}
$$

exactly, so that, adding,

$$
\begin{equation*}
w_{11}=x^{2}+\mathcal{O}\left(\epsilon^{\gamma}\right) \tag{2.9}
\end{equation*}
$$

Similarly

$$
w_{12}=w_{21}=u_{11} u_{12} \tilde{v}_{\epsilon}+u_{21} u_{22} w_{\epsilon} .
$$

This vanishes except in the range $\epsilon^{-\alpha} \leqslant|x| \leqslant 2 \epsilon^{-\alpha}$. In that range, $\tilde{v}_{\epsilon}=x^{2}+\mathcal{O}\left(\epsilon^{\gamma}\right)$, while $w_{\epsilon}=x^{2}$ exactly. Thus

$$
w_{12}=\left(u_{11} u_{12}+u_{21} u_{22}\right) x^{2}+\mathcal{O}\left(\epsilon^{\gamma}\right)
$$

But the coefficient of x^{2} is zero, since $U^{*} U=I$, so that

$$
\begin{equation*}
w_{12}=\mathcal{O}\left(\epsilon^{\gamma}\right) . \tag{2.10}
\end{equation*}
$$

Finally, since $x=0$ is the unique minimum of $v(x)$, and since $v(x)$ is bounded away from zero at infinity, the global minimum of $v(x)$ on $|x| \geqslant \epsilon^{1-\alpha}$ is its minimum on $\epsilon^{1-\alpha} \leqslant|x| \leqslant 2 \epsilon^{1-\alpha}$ so that

$$
\tilde{v}_{\epsilon}(x) \geqslant \epsilon^{-2 \alpha}+\mathcal{O}\left(\epsilon^{\gamma}\right)
$$

on $|x| \geqslant \epsilon^{-\alpha}$.
Using equation (2.9), we obtain

$$
\begin{equation*}
w_{22}=u_{22}^{2} w_{\epsilon}+u_{21}^{2} \tilde{v}_{\epsilon} \geqslant \frac{1}{2} \epsilon^{-2 \alpha} \tag{2.11}
\end{equation*}
$$

These terms are therefore consistent with the claims of lemma 1.
The remaining terms are P^{2} and the commutator

$$
\begin{equation*}
U\left(\epsilon^{\alpha} x\right)^{*}\left[P^{2}, U\left(\epsilon^{\alpha} x\right)\right]=A(x, \epsilon) p+p A(x, \epsilon) \tag{2.12}
\end{equation*}
$$

where

$$
A(x, \epsilon)=\mathrm{i} \epsilon^{\alpha} U\left(\epsilon^{\alpha} x\right)^{*} U^{\prime}\left(\epsilon^{\alpha} x\right)=A(x, \epsilon)^{*}
$$

vanishes except on $\epsilon^{-\alpha} \leqslant|x| \leqslant 2 \epsilon^{-\alpha}$. Since $U(x)$ is orthogonal, $U^{*}(x) U^{\prime}(x)$ is skew symmetric, and hence the diagonal terms of the matrix $A(x, \epsilon)$ are zero. Clearly

$$
\begin{equation*}
A(x, \epsilon)=\mathcal{O}\left(\epsilon^{\alpha}\right) \tag{2.13}
\end{equation*}
$$

Moreover

$$
\begin{equation*}
p A(x, \epsilon)=A(x, \epsilon) p-\mathrm{i} A^{\prime}(x, \epsilon) \tag{2.14}
\end{equation*}
$$

where

$$
\begin{equation*}
A^{\prime}(x, \epsilon)=\mathcal{O}\left(\epsilon^{2 \alpha}\right) \tag{2.15}
\end{equation*}
$$

Combining this with the preceding yields the lemma.

3. Perturbation theory

We shall write equation (2.4) as

$$
\begin{equation*}
H_{\epsilon}=H_{\epsilon}^{0}+V_{\epsilon}+D_{\epsilon} \tag{3.1}
\end{equation*}
$$

where

$$
\begin{align*}
& H_{\epsilon}^{0}=\left(\begin{array}{cc}
h_{0} & 0 \\
0 & k_{\epsilon}
\end{array}\right) \tag{3.2}\\
& V_{\epsilon}=\left(\begin{array}{cc}
v_{\epsilon} & 0 \\
0 & 0
\end{array}\right) \tag{3.3}
\end{align*}
$$

and

$$
D_{\epsilon}=\left(\begin{array}{cc}
0 & d_{\epsilon} \tag{3.4}\\
d_{\epsilon}^{*} & 0
\end{array}\right)
$$

and will regard $V_{\epsilon}+D_{\epsilon}$ as a perturbation of H_{ϵ}^{0}.
Define $r_{0}(z)=\left(h_{0}-z\right)^{-1}, g_{\epsilon}(z)=\left(k_{\epsilon}-z\right)^{-1}, R_{\epsilon}(z)=\left(H_{\epsilon}-z\right)^{-1}$ and $R_{\epsilon}^{0}(z)=$ $\left(H_{\epsilon}^{0}-z\right)^{-1}$.

Lemma 2. Let $B_{\epsilon}=p g_{\epsilon}(z)$. Then for any $a>0$

$$
\left\|B_{\epsilon}\right\|=\mathcal{O}\left(\epsilon^{\alpha}\right)
$$

uniformly for $\operatorname{Re} z \leqslant a$.
Proof. Let $z=t+\mathrm{is}$. Then, since $w_{\epsilon} \geqslant 0$,

$$
\begin{align*}
B_{\epsilon}^{*} B_{\epsilon} & =g_{\epsilon}(z)^{*} p^{2} g_{\epsilon}(z) \leqslant g_{\epsilon}(z)^{*}\left(p^{2}+w_{\epsilon}\right) g_{\epsilon}^{*}(z) \tag{3.5}\\
& =\left(k_{\epsilon}-t+\mathrm{i} s\right)^{-1} k_{\epsilon}\left(k_{\epsilon}-t-i s\right)^{-1} \tag{3.6}\\
& =\frac{k_{\epsilon}}{\left(k_{\epsilon}-t\right)^{2}+s^{2}} \leqslant \frac{k_{\epsilon}}{\left(k_{\epsilon}-a\right)^{2}} \tag{3.7}
\end{align*}
$$

The norm of this is the minimum of $\lambda(\lambda+a)^{-2}$ over the spectrum of k_{ϵ}, which is contained in $\left[\epsilon^{-2 \alpha} / 2, \infty\right)$. If $\epsilon^{-2 \alpha}>2 a$, this will not exceed

$$
2 \epsilon^{-2 \alpha}\left(\epsilon^{-2 \alpha}+2 a\right)^{-2}=\mathcal{O}\left(\epsilon^{2 \alpha}\right)
$$

Consider the non-degenerate eigenvalue $\lambda_{0}=2 n+1$ of h_{0}, and hence also of H_{ϵ}^{0} (for small ϵ). Let Γ be the circle with centre λ_{0} and radius 1 . We shall compute the perturbed eigenvalue of

$$
\begin{equation*}
H_{\epsilon}=H_{\epsilon}^{0}+T_{\epsilon} . \tag{3.8}
\end{equation*}
$$

As in [5, p 79], this can be done if the series

$$
\begin{equation*}
R_{\epsilon}(z)=\sum_{k=0}^{\infty} R_{\epsilon}^{0}(z)\left[T_{\epsilon} R_{\epsilon}^{0}(z)\right]^{k} \tag{3.9}
\end{equation*}
$$

converges uniformly on Γ. But

$$
T_{\epsilon} R_{\epsilon}^{0}(z)=\left(\begin{array}{cc}
v_{\epsilon} r_{0}(z) & d_{\epsilon} g_{\epsilon}(z) \\
d_{\epsilon}^{*} r_{0}(z) & 0
\end{array}\right)
$$

Using lemmas 1 and 2, and the fact that $p r_{0}(z)$ is bounded on Γ, we find that

$$
\begin{equation*}
\left\|T_{\epsilon} R_{\epsilon}^{0}(z)\right\|=\mathcal{O}\left(\epsilon^{\gamma^{\prime}}\right) \tag{3.10}
\end{equation*}
$$

uniformly on Γ where $\gamma^{\prime}=\min (\gamma, \alpha)$. This ensures the existence of a unique eigenvalue of H_{ϵ} inside Γ.

4. Asymptotic series

It remains for us to identify the terms of the series for $E_{n}(\epsilon)$ to all orders in ϵ. Let

$$
s=\lim _{\lambda \rightarrow \lambda_{0}}\left[r_{0}(\lambda)-\left(\lambda-\lambda_{0}\right)^{-1}\left|\phi_{0}\right\rangle\left\langle\phi_{0}\right|\right]
$$

be the reduced resolvent for $h_{0}=p^{2}+x^{2}$ at $\lambda_{0}=2 n+1$, where ϕ_{0} is the normalized eigenfunction. The reduced resolvent for H_{ϵ}^{0} is then

$$
S_{\epsilon}=\left(\begin{array}{cc}
s & 0 \tag{4.1}\\
0 & g_{\epsilon}\left(\lambda_{0}\right)
\end{array}\right) .
$$

Let $\langle x\rangle=\left(1+x^{2}\right)^{\frac{1}{2}}$.
Lemma 3. For every $N>0,\langle x\rangle^{N} S\langle x\rangle^{-N}$ is bounded.
Proof. By a standard result [7], $\langle x\rangle^{N} r_{0}(z)\langle x\rangle^{-N}$ is bounded for $z \notin \sigma\left(h_{0}\right)$. Subtracting $\langle x\rangle^{N}\left|\phi_{0}\right\rangle\left\langle\phi_{0}\right|\langle x\rangle^{-N}\left(\lambda_{0}-z\right)^{-1}$ gives an operator which is analytic in a neighbourhood of λ_{0}, with no singularity, so we may pass to the limit $z \rightarrow \lambda_{0}$.

Expand the resolvent in powers of the perturbation $V_{\epsilon}+D_{\epsilon} \equiv G_{\epsilon}$. Then [5, p 79, equation (2.31)]

$$
\begin{equation*}
E_{n}(\epsilon)=\sum_{k=0}^{\infty} \frac{(-1)^{r}}{k} \sum_{\substack{k_{1}+\cdots+k_{n}=r-1 \\ k_{h} \geqslant 0}} \operatorname{tr}\left(G_{\epsilon} S^{\left(k_{1}\right)} G_{\epsilon} S^{\left(k_{2}\right)} \cdots G_{\epsilon} S^{\left(k_{r}\right)}\right) \tag{4.2}
\end{equation*}
$$

where $S^{(1)}=S$ and $S^{(0)}=-\left|\phi_{0}\right\rangle\left\langle\phi_{0}\right|=-P_{0}$. By equation (3.9), the r th term is $\mathcal{O}\left(\epsilon^{r \gamma^{\prime}}\right)$ so to $\mathcal{O}\left(\epsilon^{N}\right)$ for any fixed N only a finite number of terms contribute to $E_{n}(\epsilon)$. Furthermore, each term of (4.2) is a sum of products of factors of the form

$$
\begin{equation*}
\left\langle\phi_{0}\right| G_{\epsilon} S G_{\epsilon} S \cdots S G_{\epsilon}\left|\phi_{0}\right\rangle \tag{4.3}
\end{equation*}
$$

Putting $G_{\epsilon}=V_{\epsilon}+D_{\epsilon}$ and expanding, we have further a sum of products of factors

$$
\begin{equation*}
T=\left\langle\phi_{0}\right| G_{\epsilon}^{(1)} S X_{\epsilon}^{(2)} S \cdots S X_{\epsilon}^{(\ell)}\left|\phi_{0}\right\rangle \tag{4.4}
\end{equation*}
$$

where $X_{\epsilon}^{(j)}$ is either V_{ϵ} or D_{ϵ}.
Lemma 4. If at least one $X_{\epsilon}^{(j)}=D_{\epsilon}$, then

$$
\begin{equation*}
T=\mathcal{O}\left(\epsilon^{N}\right) \tag{4.5}
\end{equation*}
$$

for every N.
Proof. Let m be the first index with $X_{\epsilon}^{(m)}=D_{\epsilon}$. Then

$$
\begin{equation*}
T=\left\langle\psi_{\epsilon}^{(1)} \mid \psi_{\epsilon}\right\rangle \tag{4.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\psi_{\epsilon}=\left[S V_{\epsilon}\right]^{m-1} \phi_{0}=\binom{\left(S V_{\epsilon}\right)^{m-1} \phi_{0}}{0} \tag{4.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi_{\epsilon}^{(1)}=D_{\epsilon} S X_{\epsilon}^{(m+1)} \cdots X_{\epsilon}^{(r)} \phi_{0} . \tag{4.8}
\end{equation*}
$$

Let $\chi_{\epsilon}(x)$ be the characteristic function of $\left[\epsilon^{-\alpha}, 2 \epsilon^{-\alpha}\right]$. Since $\chi_{a} \psi_{\epsilon}^{(1)}=\psi_{\epsilon}^{(1)}$, we have

$$
\begin{equation*}
T=\left\langle\chi_{\epsilon} \psi_{\epsilon}^{(1)} \mid \psi_{\epsilon}\right\rangle=\left\langle\psi_{\epsilon}^{(1)} \mid \chi_{\epsilon} \psi_{\epsilon}\right\rangle \tag{4.9}
\end{equation*}
$$

By the estimates above, $\psi_{\epsilon}^{(1)}=\mathcal{O}\left(\epsilon^{p}\right)$ for some p, so it suffices to prove that $\chi_{\epsilon} \psi_{\epsilon}$ tends rapidly to zero.

Let N be arbitrary and write

$$
\begin{equation*}
\chi_{\epsilon} \psi_{\epsilon}=\left(\chi_{\epsilon}\langle x\rangle^{-N}\right)\left[\langle x\rangle^{N} s\langle x\rangle^{-N} v_{\epsilon}\right]^{m-1}\left(\langle x\rangle^{N} \phi_{0}\right) . \tag{4.10}
\end{equation*}
$$

The first factor is $\mathcal{O}\left(\epsilon^{N \alpha}\right)$, while the rest is $\mathcal{O}\left(\epsilon^{p}\right)$ for some p. Since N is arbitrary, this completes the proof.

This means that to all orders of $\epsilon, E_{n}(\epsilon)$ is given by the perturbation problem

$$
\begin{equation*}
h_{\epsilon}=h_{0}+v_{\epsilon} . \tag{4.11}
\end{equation*}
$$

Now, by construction,

$$
\begin{align*}
v_{\epsilon}(x) & =Y_{\epsilon}(x)\left[\epsilon^{-2} v(\epsilon x)-x^{2}\right] \\
& =Y_{\epsilon}(x)\left[\epsilon a_{1} x^{3}+\cdots+\epsilon^{N} a_{N} x^{N+2}+R_{N}(x, \epsilon)\right] \tag{4.12}
\end{align*}
$$

where $Y_{\epsilon}(x)=Y\left(\epsilon^{\alpha} x\right)=u_{11}^{2}\left(\epsilon^{\alpha} x\right)$ is unity for $|x| \leqslant \epsilon^{-\alpha}$ and vanishes for $|x| \geqslant 2 \epsilon^{-\alpha}$. By equation (2.9)

$$
\begin{equation*}
R_{N}(x, \epsilon)=\mathcal{O}\left(\epsilon^{N+1-\alpha(N+3)}\right) \tag{4.13}
\end{equation*}
$$

If we choose, as we may, α small, depending on N, then

$$
R_{N}(x, \epsilon)=\mathcal{O}\left(\epsilon^{N}\right)
$$

so that it may be dropped to order N.
Use equation (4.2) again, this time for the problem (4.11). Expand and collect terms, treating $Y_{\epsilon}(x)$ formally as 1 , to obtain a sum of products of factors like

$$
\begin{equation*}
T=\left\langle\phi_{0}\right| x_{\epsilon}^{p_{1}} s x_{\epsilon}^{p_{2}} s \cdots x_{\epsilon}^{p_{r}}\left|\phi_{0}\right\rangle \tag{4.14}
\end{equation*}
$$

where $x_{\epsilon}^{p}=Y_{\epsilon}(x) x^{p}$. If x_{ϵ}^{p} is replaced by x^{p}, these are exactly the coefficients for the formal problem (1.5), so it remains for us to show that this replacement in T yields a term which differs from T to arbitrarily high order.

Another way to say this is that if Y_{ϵ} is replaced by $\tilde{Y}_{\epsilon}=1-Y_{\epsilon}$ in T, the result is $\mathcal{O}\left(\epsilon^{N}\right)$.

Let $S_{k}=\langle x\rangle^{k} S\langle x\rangle^{-k}$. Suppose $x^{p_{\ell}} Y_{\epsilon}$ is replaced by $x^{p_{\ell}} \tilde{Y}_{\epsilon}$ in T to give \tilde{T}. We have

$$
\begin{equation*}
\tilde{T}=\left\langle\tilde{\phi}_{\epsilon} \mid \psi_{\epsilon}\right\rangle \tag{4.15}
\end{equation*}
$$

where

$$
\begin{equation*}
\tilde{\psi}_{\epsilon}=\tilde{x}^{p_{\ell}} \tilde{Y}_{\epsilon} x_{\epsilon}^{p_{\ell-1}} \cdots x_{\epsilon}^{p_{1}} \phi_{0} \tag{4.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi_{\epsilon}=S x^{p_{\ell+1}} S \cdots x^{p_{r}} \phi_{0} \tag{4.17}
\end{equation*}
$$

Write
$\tilde{\psi}_{\epsilon}=\left(\tilde{Y}_{\epsilon}\langle x\rangle^{-N}\right)\left(x_{\epsilon}^{p_{\ell}}\langle x\rangle^{-p_{\ell}}\right) S_{N+p_{\ell}}\left(x_{\epsilon}^{p_{\ell-1}}\langle x\rangle^{-p_{\ell-1}}\right) S_{N+p_{\ell}+p_{\ell-1}} \cdots x_{\epsilon}^{p_{r}}\langle x\rangle^{-p_{r}}$

$$
\begin{equation*}
\cdots\langle x\rangle^{N+p_{1}+\cdots+p_{r}} \phi_{0} \tag{4.18}
\end{equation*}
$$

Now $\tilde{Y}_{\epsilon}\langle x\rangle^{-N}=\mathcal{O}\left(\epsilon^{\alpha N}\right)$, while the remaining factors are bounded. A similar argument shows that ψ_{ϵ} is bounded. Thus

$$
\tilde{T}=\mathcal{O}\left(\epsilon^{\alpha N}\right)
$$

Since N is arbitrary, this proves the result, since the same argument works if some of the x_{ϵ} 's are replaced by x 's.

References

[1] Davies E B 1982 The twisting trick for double well Hamiltonians Commun. Math. Phys. 85 471-9
[2] Davies E B and Simon B 1978 Scattering theory for systems with different spatial asymptotics on the left and right Commun. Math. Phys. 63 277-301
[3] Helffer B 1988 Semiclassical Analysis for the Schrödinger Operator and Applications (Lecture Notes in Mathematics 1336) (Berlin: Springer)
[4] Howland J S and McDonnell J S Perturbation theory of resonance widths, in preparation
[5] Kato T 1966 Perturbation Theory for Linear Operators (Berlin: Springer)
[6] Reel M and Simon B 1979 Methods of Modern Mathematical Physics vol III (New York: Academic)
[7] Simon B 1983 Semiclassical analysis of low lying eigenvalues, I Ann. Inst. H Poincaré 38 295-308

[^0]: \dagger Supported by NSF Contract DMS-9002357.

