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Abstract. The quasiclassical approximation to the eigenvalues at the bottom of a one-
dimensional potential well are obtained by applying the ‘twisting trick’ of Simon and Davies
to reduce the problem to an ordinary Rayleigh–Schrödinger problem. The key is that the twist
occurs on a scale intermediate between the two scales of the problem.

Introduction

The asymptotics of the eigenvalues at the bottom of a potential well are well known [3, 7].
Here we shall derive these results by a somewhat different method which was employed by
McDonnell and the author [4] to discuss the asymptotics of Stark effect resonance widths.
This method of‘twisting at intermediate scales’relies on the notion that in a problem with
multiple length scales, phenomena which take place on different scales frequently act as
though they are in orthogonal subspaces. A precise version of this notion can sometimes
be arranged by use of the ‘twisting trick’ [1, 2, 6].

We shall consider the Hamiltonian

ε4p2+ v(x)
on L2(−∞,+∞), wherep = −id/dx andv(x) is aC∞ function having auniqueglobal
minimum v(0) = 0 at the origin. More complicated cases have been considered (higher
dimensions, several minima, degeneracies, other forms of dependence on the parameterε,
etc) but our purpose is to illustrate a method, not to achieve maximum generality, so we
shall stick to the simplest case.

The relevant length scales are as follows. The potentialv(x) changes on a scale of
order 1. The eigenfunctions at the bottom of the well are asymptotically of the form
φn(x/ε), whereφn is a Hermite function, and so decay exponentially on a scale of orderε.
We shall therefore cut out a region with length of orderεα, 0 < α < 1 about the origin.
This region is very small on a scale of order 1 and very large on a scale of orderε. The
behaviour in the two regions is separated approximately by twisting, and the result is then
obtained by ordinary perturbation theory.

1. Main theorem

To be precise, we shall make the following assumptions aboutv(x).

† Supported by NSF Contract DMS-9002357.

0305-4470/97/062069+08$19.50c© 1997 IOP Publishing Ltd 2069



2070 J S Howland

Hypothesis 1.Let v(x) be aC∞ function on−∞ < x < ∞, and assume thatv(x) has
a unique global minimumv(0) = 0 at x = 0, which is non-degenerate in the sense that
v′′(0) > 0. For normalization, we shall takev′′(0) = 2. Assume further that

lim inf
|x|→∞

v(x) > 0. (1.1)

Rather than dealing directly with

ε4p2+ v(x) (1.2)

we shall scalex → εx to obtain

ε2[p2+ ε−2v(εx)] (1.3)

and will work with

hε = p2+ ε−2v(εx). (1.4)

(Note that the scalesε and 1 become 1 and 1/ε here, so that the twist will come on a scale
of orderε−α, 0< α < 1.)

Theorem 1.If v(x) satisfies hypothesis 1, then for eachN , the lowestN eigenvalues ofhε
are given asymptotically by

En = (2n+ 1)+ c1(n)ε + · · · ck(n)εk + · · · (1.5)

for 0 6 n < N , where the coefficientsck(n) are obtained from the formal Rayleigh–
Schr̈odinger perturbation series for the problem

p2+ x2+ a1x
3+ · · · + akεkxk+2+ · · · (1.6)

where

ak = v(k+2)(0)

(k + 2)!
.

2. Twisting

Fix 0< α < 1
3. Define a functionwε(x) by

wε(x) =
{
x2 |x| > 2ε−α

ε−2α |x| 6 ε−α.
(2.1)

Consider the matrix operator

H̃ε =
(
hε 0

0 p2+ wε(x)
)
= P 2+

(
ε−2v(εx) 0

0 wε(x)

)
(2.2)

on L2(−∞,+∞) ⊗ C2 whereP 2 = p2 ⊗ I , and note thatHε has the same low-lying
eigenvalues ashε , sincep2+ wε(x) > ε−2α.

Let U(x) be a real orthogonal 2× 2 matrix,C∞ in x, with

U(x) = I =
(

1 0

0 1

)
for |x| 6 1

and

U(x) = J =
(

0 1

−1 0

)
for |x| > 2

(see, e.g., [1]). Transforming̃Hε by U(εαx), we find thatH̃ε is unitarily equivalent to

Hε = U ∗(εαx)H̃εU(εαx). (2.3)

This operator is described by the following lemma.
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Lemma 1.For 0< α < 1
3, H̃ε is unitarily equivalent to an operator

Hε =
(
h0+ vε dε

d∗ε kε

)
(2.4)

where (a)h0 = p2+ x2 is the harmonic oscillator, and

vε = vε(x) = O(εγ ) (2.5)

whereγ = 1− 3α > 0; (b) kε = p2+ w̃ε(x), where

w̃ε(x) > 1
2ε
−2α

and (c)dε = aε(x)p + bε(x), with

aε(x) = O(εα) and bε(x) = O(εβ) (2.6)

whereβ = min(γ, 2α). Moreover,vε(x) is supported in|x| 6 2ε−α, while aε(x) andbε(x)
are supported inε−α 6 |x| 6 2ε−α.

Note. By commutingaε(x) with p, one can also write

dε = pãε(x)+ b̃ε(x)
whereãε and b̃ε have the same properties asaε andbε .

Proof. By Taylor’s theorem

ṽε(x) = ε−2v(εx) = x2+ R2(x, ε) (2.7)

where

R2(x, ε) = 1
6v
′′′(ξ)εx3

with |ξ | < |εx|. For |x| 6 2ε−α, we have

|R2(x, ε)| 6 Mεε−3α = O(εγ ) (2.8)

whereM = 4
3 sup{|v′′′(ξ)| : |ξ | 6 1}, andγ = 1− 3α > 0.

Let

U =
(
u11 u12

u21 u22

)
and consider the term

W(x, ε) ≡ U(εαx)∗
(
ṽε 0

0 wε

)
U(εαx).

We compute

w11 = u2
11γ̃ε + u2

12wε.

Sinceu2
11 is supported in|x| 6 2ε−α andu2

12 in |x| > ε−α, we find from equations (2.8)
and (2.9) that

u2
11ṽε = u2

11x
2+O(εγ )

while from equation (2.1)

u2
12wε = x2

exactly, so that, adding,

w11 = x2+O(εγ ). (2.9)
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Similarly

w12 = w21 = u11u12ṽε + u21u22wε.

This vanishes except in the rangeε−α 6 |x| 6 2ε−α. In that range,̃vε = x2+O(εγ ), while
wε = x2 exactly. Thus

w12 = (u11u12+ u21u22)x
2+O(εγ ).

But the coefficient ofx2 is zero, sinceU ∗U = I , so that

w12 = O(εγ ). (2.10)

Finally, sincex = 0 is theuniqueminimum of v(x), and sincev(x) is bounded away
from zero at infinity, the global minimum ofv(x) on |x| > ε1−α is its minimum on
ε1−α 6 |x| 6 2ε1−α so that

ṽε(x) > ε−2α +O(εγ )
on |x| > ε−α.

Using equation (2.9), we obtain

w22 = u2
22wε + u2

21ṽε > 1
2ε
−2α. (2.11)

These terms are therefore consistent with the claims of lemma 1.
The remaining terms areP 2 and the commutator

U(εαx)∗[P 2, U(εαx)] = A(x, ε)p + pA(x, ε) (2.12)

where

A(x, ε) = iεαU(εαx)∗U ′(εαx) = A(x, ε)∗

vanishes except onε−α 6 |x| 6 2ε−α. SinceU(x) is orthogonal,U∗(x)U ′(x) is skew
symmetric, and hence thediagonal termsof the matrixA(x, ε) are zero. Clearly

A(x, ε) = O(εα). (2.13)

Moreover

pA(x, ε) = A(x, ε)p − iA′(x, ε) (2.14)

where

A′(x, ε) = O(ε2α). (2.15)

Combining this with the preceding yields the lemma. �

3. Perturbation theory

We shall write equation (2.4) as

Hε = H 0
ε + Vε +Dε (3.1)

where

H 0
ε =

(
h0 0

0 kε

)
(3.2)

Vε =
(
vε 0

0 0

)
(3.3)
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and

Dε =
(

0 dε

d∗ε 0

)
(3.4)

and will regardVε +Dε as a perturbation ofH 0
ε .

Define r0(z) = (h0 − z)−1, gε(z) = (kε − z)−1, Rε(z) = (Hε − z)−1 and R0
ε (z) =

(H 0
ε − z)−1.

Lemma 2.Let Bε = pgε(z). Then for anya > 0

‖Bε‖ = O(εα)

uniformly for Rez 6 a.

Proof. Let z = t + is. Then, sincewε > 0,

B∗ε Bε = gε(z)∗p2gε(z) 6 gε(z)∗(p2+ wε)g∗ε (z) (3.5)

= (kε − t + is)−1kε(kε − t − is)−1 (3.6)

= kε

(kε − t)2+ s2
6 kε

(kε − a)2 . (3.7)

The norm of this is the minimum ofλ(λ+a)−2 over the spectrum ofkε , which is contained
in
[
ε−2α/2,∞). If ε−2α > 2a, this will not exceed

2ε−2α(ε−2α + 2a)−2 = O(ε2α).

Consider the non-degenerate eigenvalueλ0 = 2n+ 1 of h0, and hence also ofH 0
ε (for

small ε). Let 0 be the circle with centreλ0 and radius 1. We shall compute the perturbed
eigenvalue of

Hε = H 0
ε + Tε. (3.8)

As in [5, p 79], this can be done if the series

Rε(z) =
∞∑
k=0

R0
ε (z)[TεR

0
ε (z)]

k (3.9)

converges uniformly on0. But

TεR
0
ε (z) =

(
vεr0(z) dεgε(z)

d∗ε r0(z) 0

)
.

Using lemmas 1 and 2, and the fact thatpr0(z) is bounded on0, we find that

‖TεR0
ε (z)‖ = O(εγ

′
) (3.10)

uniformly on0 whereγ ′ = min(γ, α). This ensures the existence of a unique eigenvalue
of Hε inside0.
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4. Asymptotic series

It remains for us to identify the terms of the series forEn(ε) to all orders inε. Let

s = lim
λ→λ0

[
r0(λ)− (λ− λ0)

−1|φ0〉〈φ0|
]

be the reduced resolvent forh0 = p2 + x2 at λ0 = 2n + 1, whereφ0 is the normalized
eigenfunction. The reduced resolvent forH 0

ε is then

Sε =
(
s 0

0 gε(λ0)

)
. (4.1)

Let 〈x〉 = (1+ x2)
1
2 .

Lemma 3.For everyN > 0, 〈x〉NS〈x〉−N is bounded.

Proof. By a standard result [7],〈x〉Nr0(z)〈x〉−N is bounded forz /∈ σ(h0). Subtracting
〈x〉N |φ0〉〈φ0|〈x〉−N(λ0− z)−1 gives an operator which is analytic in a neighbourhood ofλ0,
with no singularity, so we may pass to the limitz→ λ0. �

Expand the resolvent in powers of the perturbationVε + Dε ≡ Gε . Then
[5, p 79, equation (2.31)]

En(ε) =
∞∑
k=0

(−1)r

k

∑
k1+···+kn=r−1

kh>0

tr
(
GεS

(k1)GεS
(k2) · · ·GεS

(kr )
)

(4.2)

whereS(1) = S andS(0) = −|φ0〉〈φ0| = −P0. By equation (3.9), therth term isO(εrγ ′) so
to O(εN) for any fixedN only a finite number of terms contribute toEn(ε). Furthermore,
each term of (4.2) is a sum of products of factors of the form

〈φ0|GεSGεS · · · SGε |φ0〉. (4.3)

PuttingGε = Vε +Dε and expanding, we have further a sum of products of factors

T = 〈φ0|G(1)
ε SX

(2)
ε S · · · SX(`)ε |φ0〉 (4.4)

whereX(j)ε is eitherVε or Dε .

Lemma 4.If at least oneX(j)ε = Dε , then

T = O(εN) (4.5)

for everyN .

Proof. Let m be the first index withX(m)ε = Dε . Then

T = 〈ψ(1)
ε |ψε〉 (4.6)

where

ψε = [SVε ]
m−1φ0 =

(
(SVε)

m−1φ0

0

)
(4.7)

and

ψ(1)
ε = DεSX

(m+1)
ε · · ·X(r)ε φ0. (4.8)

Let χε(x) be the characteristic function of [ε−α, 2ε−α]. Sinceχaψ(1)
ε = ψ(1)

ε , we have

T = 〈χεψ(1)
ε |ψε〉 = 〈ψ(1)

ε |χεψε〉. (4.9)

By the estimates above,ψ(1)
ε = O(εp) for somep, so it suffices to prove thatχεψε tends

rapidly to zero.
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Let N be arbitrary and write

χεψε =
(
χε〈x〉−N

) [〈x〉Ns〈x〉−Nvε]m−1
(〈x〉Nφ0). (4.10)

The first factor isO(εNα), while the rest isO(εp) for somep. SinceN is arbitrary, this
completes the proof. �

This means that to all orders ofε, En(ε) is given by the perturbation problem

hε = h0+ vε. (4.11)

Now, by construction,

vε(x) = Yε(x)[ε−2v(εx)− x2]

= Yε(x)[εa1x
3+ · · · + εNaNxN+2+ RN(x, ε)] (4.12)

whereYε(x) = Y (εαx) = u2
11(ε

αx) is unity for |x| 6 ε−α and vanishes for|x| > 2ε−α. By
equation (2.9)

RN(x, ε) = O
(
εN+1−α(N+3)

)
. (4.13)

If we choose, as we may,α small, depending onN , then

RN(x, ε) = O(εN)
so that it may be dropped to orderN .

Use equation (4.2) again, this time for the problem (4.11). Expand and collect terms,
treatingYε(x) formally as 1, to obtain a sum of products of factors like

T = 〈φ0|xp1
ε sx

p2
ε s · · · xprε |φ0〉 (4.14)

wherexpε = Yε(x)x
p. If xpε is replaced byxp, these are exactly the coefficients for the

formal problem (1.5), so it remains for us to show that this replacement inT yields a term
which differs fromT to arbitrarily high order.

Another way to say this is that ifYε is replaced byỸε = 1− Yε in T , the result is
O(εN).

Let Sk = 〈x〉kS〈x〉−k. Supposexp`Yε is replaced byxp` Ỹε in T to give T̃ . We have

T̃ = 〈φ̃ε |ψε〉 (4.15)

where

ψ̃ε = x̃p` Ỹεxp`−1
ε · · · xp1

ε φ0 (4.16)

and

ψε = Sxp`+1S · · · xpr φ0. (4.17)

Write

ψ̃ε =
(
Ỹε〈x〉−N

) (
xp`ε 〈x〉−p`

)
SN+p`

(
xp`−1
ε 〈x〉−p`−1

)
SN+p`+p`−1 · · · xprε 〈x〉−pr

· · · 〈x〉N+p1+···+pr φ0. (4.18)

Now Ỹε〈x〉−N = O(εαN), while the remaining factors are bounded. A similar argument
shows thatψε is bounded. Thus

T̃ = O(εαN).
SinceN is arbitrary, this proves the result, since the same argument works if some of the
xε ’s are replaced byx’s. �
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